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Abstract A finite element solution on the interaction of surface radiation and variable property
laminar natural convection is presented. Finite element formulation of the governing equations,
associated with variable property natural convection, and incorporation of the radiative boundary
conditions has been extensively discussed. The study also aims to highlight the limiting value of
the terminal temperature difference (TTD), below which the natural convection heat transfer
becomes the sole heat transfer mode, i.e. the effect of surface radiation can be neglected. The
effects of variations of emissivity and TTD are also presented.

Nomenclature
c = Specific heat
cr = Specific heat at reference

temperature
c* = Non-dimensional specific heat [=c/cr]
Fij = View factor of ith surface from jth

surface
g = Acceleration due to gravity
Grr = Reference Grashoff number

[= g�r (TH±TC)H /�r]
H = Cavity height
J = Radiosity
J* = Non-dimensional radiosity

[=J/�(TH)4]
k = Thermal conductivity
kr = Thermal conductivity at reference

temperature
k* = Non-dimensional thermal

conductivity [=k/kr]
N = Number of participating surfaces
Nh = Number of segments on hot wall
Nu = Nusselt number
p = Fluid pressure
pr = Reference pressure
p* = Non-dimensional pressure [=p/pr]
Prr = Reference Prandtl number [=�r/�r]
QT,QH = Total heat transfer at hot wall

QconH = Convective heat transfer at hot wall
QconC = Convective heat transfer at cold wall
QR,QradH = Radiative heat transfer at hot wall
QradC = Radiative heat transfer at cold wall
QC = Total heat transfer at cold wall
QN = Heat transfer in pure natural

convection
(QT±QN)/QN = Heat ratio
RC = Radiation-conduction parameter

[=H�(TH)4/kr(TH±TC)]
Ra = Rayleigh number
TH,TC = Hot and cold wall temperature
TTD = Terminal temperature difference

[(TH±TC)]
(TH±TC)/TC = Overheat ratio
Tr = Reference temperature
u,v = Fluid velocities
U,V = Non-dimensional fluid velocities
U0 = Characteristic velocity

[=
p

{�rgH(TH±TC)}]
Greek symbols
�r = Coefficient of volume expansion at

reference temperature
� = Non-dimensional temperature

[=(T±Tr)/(TH±TC)]
� = Fluid density
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Introduction
The study of radiation, either combined with conduction or convection in
multidimensional enclosure, has received significant attention in recent years
due to its direct relevance in potential application areas. Since an exact
analytical solution for most of these cases is impossible to achieve, need arises
for development of some numerical tools to tackle such thermal problems. Not
long ago, finite difference schemes were considered to be the only efficient
numerical tool for solving steady, two dimensional natural convection
equations. This is evident from the year of publication of a work by G. de Vahl
Davis and I.P. Zones (1983) who have compared the results of other authors, on
the study of natural convection in a differentially heated square cavity. These
results were based on finite difference schemes. Basic assumptions associated
with de Vahl Davis and Zones (1983) were very much simplified. Incorporation
of Boussinesq approximation along with the striking simplifications like
steady laminar flow of a Newtonian fluid were some of the salient features of de
Vahl Davis and Zones (1983). Nevertheless, de Vahl Davis and Zones (1983)
continued to be a widely referred work and enjoyed the distinction of being a
`̀ bench mark solution'' over the following years. Since then, a number of
changes have taken place. As far as the numerical method is concerned,
researchers became increasingly interested with the use of finite element
method for the solution of fluid dynamics and heat transfer problems. Like the
finite difference formulation, several schemes are envisaged for the finite
element method (FEM) too. From the point of view of application to FEM, the
stream function-vorticity function approach was successfully employed by
Stevens (1982), Baker (1973) and Cheng (1972). The complete stream function
formulation using FEM has been reported by Olson (1973). Heinrich and Strata
(1978) outlined the scheme for penalty finite element formulation. However, use
of primitive variable approach is fast becoming popular although there are two
major drawbacks.

First, the continuity is not exactly satisfied and second, one has to contend
with large number of variables. However the compensating advantage is that
the formulation is relatively simple and straightforward. As noted before,
earlier investigations relied heavily on some simplifying assumptions. In
subsequent developments, some of these assumptions were dispensed with.
The first is associated with the universal adoption of Boussinesq
approximation. It is generally known that this approximation is valid for small
temperature difference. However, as thermal conditions become severe in some
specialized application areas, it appeared that a more realistic approach will

�r = Fluid density at reference
temperature

�� = Non-dimensional fluid density
[=�/�r]

� = Fluid viscosity
�r = Fluid viscosity at reference

temperature

�� = Non-dimensional fluid viscosity
[=�/�r]

� = Stephan-Boltzman constant
"i = Emissivity of ith surface
�r = Thermal diffusivity at reference

temperature
�r = Kinematic viscosity at reference

temperature
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result if the effect of variable property is taken into account. Polezahev (1967)
seems to be an early investigator in this field. Some subsequent reports on
problems involving variable property natural convection have been published
by Macgregor and Emery (1969), Leonardi and Reizes (1979, 1981) and Fusegi
and Farouk (1989). Zhong et al. (1985) addressed several important problems
associated with variable property convection, like the reference temperature
issue and the limits of Boussinesq approximation. They concluded that the
Boussinesq approximation was generally valid when the overheat ratio is less
than 0.1. The effect of variable properties on laminar free convection heat
transfer of monoatomic gas, polyatomic gas, air and water has been reported
by Shang and Wang (1990, 1991). They noted that for polyatomic gases the
classical Boussinesq approximation did not hold good even for small ranges of
overheat ratio.

Subsequent to these observations, it was soon realised that besides the
variable property effect, the interaction of natural convection with radiation
may have some significant role in thermal systems where a large overall
temperature difference exists. In many natural convection processes, the
radiative heat transfer may affect the temperature field and consequently the
flow field through emission and absorption processes within the fluid. This
effect may be negligibly small if the fluid is dry air. However, the emission of
radiation by the boundaries may have an important bearing on the boundary
temperatures. Because of the coupling between the thermal and flow fields
through buoyancy effects, the changes in the boundary temperatures caused by
the radiative transfer may exercise a stronger influence than expected.

However, in spite of its wide applications, the interaction analysis did not
receive adequate attention. Larson and Viskanta (1976) appear to be early
investigators who outlined the necessity of solving the coupled heat transfer
problem involving both convection and radiation. Since then only a few case
studies have been reported in which the combined heat transfer problem has
been addressed. Larson (1981), Lloyd et al. (1979) and Chang et al. (1983) were
some of the investigators who addressed this combined mode heat transfer
problem. While most of these studies concentrated on different schemes for
solving the radiation intensity equation, which is basically integro-differential
in nature, surface radiation did not recieve much attention. Coupling of surface
radiation with natural convection, has recently been described in the
investigations of Sen and Sarkar (1995) and Akiyama and Chong (1997), where
the effect of surface radiation on natural convection has been discussed in the
light of changes in thermal and flow field in differentially heated square cavity.
However, an important aspect does not appear to have been investigated, i.e.
the effect of terminal temperature difference as far as the onset of effects of
radiation is concerned. In this regard, emissivity of the bounding surfaces is
also expected to exercise considerable influence. The present work therefore, in
addition to focussing on the detail of the numerical method, also highlights
some of the associated heat transfer aspects. Accordingly it is proposed to
present the results of the present work in the following sequence:
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. effect of variation of TTD;

. effect of variation surface emissivity; and

. associated heat transfer effect.

Governing equations and boundary conditions
For a steady, laminar, two-dimensional, variable property Newtonian fluid, the
conservation equations may be expressed as follows:
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In equation (1d), the effect of viscous dissipation and the work of compression
has been neglected. Equations (1a-1d) are non- dimensionalised with the help of
the following reference quantities: X � x=H; Y � y=H;
u0 � pf�rgH�TH ÿ TC�g; �� � �=�r; P� � �pÿ pr�=��u2

0�; �� � �=�0;
c� � c=cr; k� � k=kr; Prr � �r=�r; � � �Tÿ Tr�=�TH ÿ TC�; U � u=uo;
V � v=u0. Quantities with subscript `̀ r'' refer to the property values at the
reference temperature. Throughout the present work, the cold wall temperature
has been assumed to be the reference temperature. With the introduction of the
above mentioned non-dimensional quantities into equations (1a-1d), one
obtains the following system of equations:
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It may be noted that the body force term in equation (2c) is based on the
difference between the local fluid density and the density corresponding to
fluid hydrostatic equilibrium condition. Finally, the boundary conditions are
described in Figure 1a. However, when surface radiation is to be considered the
thermal boundary conditions at the insulated walls are modified as described
below; as it has been assumed that the medium is not participating, the
radiation phenomena will be limited to the boundary surfaces only. For pure
convection cases, one substitutes, for adiabatic surfaces, ÿk�@T=@Y� � 0.
This needs to be slightly modified in the presence of surface radiation. The
specification of boundary condition on the adiabatic surface is completed by
equating the convective and radiative transfers on the plate as shown below:
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Introducing non-dimensional quantities, the above boundary condition can be
transformed in the following form:
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Test computational

domain



HFF
9,4

428

where, RC � �H��TH�4=kr�TH ÿ TC�� is the radiation-conduction parameter
and J� � J=��TH�4.

Equation (3) constitutes the gradient of the boundary condition for the
energy equation (2d). Throughout the present work, the participating surfaces
are assumed to be grey.

Finite element formulation and method of solution
Standard Galerkin formulation has been employed throughout the present
work. However, some simplifying assumptions had to be made during the
course of the discretization as illustrated below: for example, let us consider the
discretization of (2d):
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It has been assumed that the properties remain constant element wise. This
assumption permits the negligence of the spatial variation of the property while
computing the element stiffness matrix. So (2d) may recast as:
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while computing the property values ���e�, c��e�, k��e�, ���e�, as the case may be,
the temperature at the point (� � � � 0) is computed; subsequently, the
property values are interpolated (corresponding to this temperature) from
Ozisik (1985). The rest of the discretization scheme is analogous to the
conventional methods of treating incompressible flow in which the non-
linearities are treated by the Newton-Raphson method and the resulting
simultaneous equations are solved by the Frontal solver. Detail of the methods
are described elsewhere (Sarkar and Sastri, 1989). Convergence of the solution
is assumed to be achieved when the largest residue is below a pre-assigned
value, as low as 10±9 for pure convection cases. However, when radiation is
present, this limit has to be raised to 10±8 due to slower convergence rate.
During iterative process, (2a) to (2d) are solved first and the temperature
distribution of the adiabatic surfaces are obtained. Subsequently, the following
non-dimensional radiosity equations are

J�i ÿ �1ÿ "i�
XN

j�1

J�ij � "i�Ti=TH�4 �6�

Where N denotes the number of discretized participating surfaces. For
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isothermal surfaces, Ti assumes the values of TH or TC depending on its
location. When the ith side corresponds to an adiabatic surface, the average
temperature of that side of the element is considered.

A few words about the incorporation of radiative boundary condition i.e.
equation (3) in the Galerkin formulation of the energy equation i.e. of equation
(5) is in order. It may be noted that the radiative boundary condition involves
only a differential of non-dimensional temperature with respect to the non-
dimensional Y co-ordinate. So the term �k��e�=Prr

p
Grr�

R
NT�@�=@X�dY

generated from the equation (6) can be neglected. Under the circumstances,
after carrying out the integration of second order terms in equation (5), it takes
the following form:
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From the structure of equation (7), it can be seen that a line integral along the
domain boundary (i.e. the horizontal surfaces) appears in the last term which
can accommodate equation (3) quite easily. So equation (7) may be finally recast
in the following manner:
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It may be noted that the last line integral in equation (8) needs to be evaluated
only for these elements whose sides coincide with either of the horizontal
surfaces. Since the last integral in equation (8) arises out of the interaction of
conductive and radiative energy balances at the boundary, this can be treated
as a source term during implementation of the Newton-Raphson scheme.
Subsequent to the solution of (6), the Navier-Stokes and energy are solved once
again; but this time (3) is considered as a boundary condition. The scheme is
subsequently repeated. However, during two successive iterations the radiosity
values are averaged. An initial attempt to use the current radiosity values
directly during the subsequent iterations met with little success as far as the
convergence of the scheme is concerned. This lack of convergence is more
evident in connection with the present algorithm which employs the Newton-
Raphson scheme.
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It has been observed that the number of iterations are much more in the
presence of radiation. For example, when pure convection is present, only six to
seven iterations are necessary when one moves from Rayleigh number 105 to
106; whereas around 20 iterations are required under the same condition when
radiation is present.

During the course of iteration the temperature of isothermal walls (TH ,TC)
and emissivity has been supplied as the input. From the value of the cold wall
temperature, the reference property values are obtained including the reference
Prandtl number (Prr). For a specific Rayleigh number, the characteristic
dimension of the cavity (H) may be calculated. From this value of the cavity
dimension, the reference value of the velocity (U0) can be calculated. The value
of H is required in the computation of total energy transfer across the
isothermal walls. The convective heat transfer from the hot wall can be
calculated as:

QconH � ÿkrH�TH ÿ TC�
Z1

0

k��@�=@X�dY �9�

and the radiative transfer for a segment i on the hot wall can be calculated as

qradH � �J�i ÿ
XN

j�1

J�j Fij���TH�4 � (length of the element) �10�

So, the radiative transfer from the hot wall is

QradH �
XNh

i�1

qradH�i� �11�

Results and discussion
The FEM formulation as outlined above, has been used for generating a code
and has been effectively employed in the present work for investigating the
effect of surface radiation in a differentially heated square cavity. It may be
noted that an eight noded isoparametric Taylor element has been used for the
discretization of the computational domain.

Before a detailed discussion on the combined mode heat transfer can be
initiated, a brief discussion on the grid independence study is necessary. In the
present study, the mesh size is indicated by (M�N) in which M stands for the
number of elements in X-direction and N for the same along Y-direction. The
grid independence starts with a relatively coarse size mesh (14�14). The mesh
in subsequent studies has been continuously refined up to a size of (26�14).
The number of elements in the Y-direction had to be limited to 14, in order to
restrain the size of the front width. Secondly it has been observed that the
thermal gradients are predominantly along the X-direction at either of the
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active walls. These lead to the fact that it is more demanding to increase the
number of elements in X-direction than Y-direction. In the grid independence
study, the effect of variable property convection and surface radiation has been
considered. Table I shows the detail of such a study. During the study the value
of cold wall temperature is kept constant at 300K, the hot wall temperature is
assigned with 800K and emissivity is at 0.3. It is evident from the table that
there is some disagreement of energy balances at active walls (less than 0.5 per
cent) for all the grid sizes considered. This disagreement has also been reported
in the published work (Leonardi and Riezes, 1981) for variable property natural
convection. For the rest of the present work, computations have been
performed on a 26�14 mesh.

Before detailed study of the results and their analysis, the validation of the
present work for pure natural convection (i.e. " = 0) is presented, due to
nonavailability of published works in the area of present investigation. The
variations of Nusselt number with Rayleigh number as obtained from the
present work and that reported by Leonardi and Riezes (1981), for an over-heat
ratio of 0.5, have been shown in the Figure 1b. It can be seen that the present
work matches exactly up to Ra=105 while a little difference exists at Ra=106.

As can be seen from the nondimensional version of governing equations,
there are four major parameters. These are the terminal temperature difference
(i.e. TTD), surface emissivity and the parameters characterizing natural
convection, i.e. Rayleigh number and the Prandtl number. As far as the

Table I.
Grid independence

study for convection-
radiation interaction

QconH QradH QH QconC QradC QC

Grid (W) (W) (W) (W) (W) (W)

14�14 99.496 122.182 221.678 129.002 98.373 227.375
18�14 100.34 122.272 222.612 131.785 98.247 230.032
22�14 103.288 122.569 225.857 136.166 98.199 234.365
26�14 104.780 122.360 227.140 137.137 98.200 235.337

Notes: TH =800K; TC =300K; Ra=106; Prr =0.71; " = 0.3
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presentation of the results is concerned, the authors had to be selective in
presenting the results in view of the large number of parameters involved.
Consequently, the presentation is carried out in the following sequence.

Effect of variation of TTD
In this section, both the surface emissivity and Rayleigh number have been
kept constant at 0.3 and 106 respectively. Figure 2 represents the development
of thermal field as TTD is increased from 5K to 500K. Figure 2a represents the
case with TTD=5K, which is characterized by the presence of a thermally
statified core and near isothermal pools near the top and bottom horizontal
boundaries. The crowding of isotherms at the bottom of the heated wall on the
left and at the top of the cold wall on the right indicates the presence of strong
convection in these regions. The near vertical nature of these isotherms, in
these regions, amply demonstrates that the portion of the involved horizontal
boundaries remain unaffected by either modes of heat transfer. The curvatures
experienced by some typical isotherms at the bottom and top plates indicates
that the gradients over there are governed by a combination of convection and
radiation heat transfer modes (see equation (3)). As the TTD is increased to
300K, several important features of flow field are revealed (see Figure 2b). First,
the isotherms near the heated plate have spread somewhat and the effect of
radiation from the hot wall is more pronounced. Second, the size of the
thermally stratified core has reduced somewhat. Also, the size of the isothermal
pool at the top has increased in size while the one near the bottom horizontal
boundary begun to lose its identity because of gradual intrusion of a number of
isotherms into that region. The orientation also suggests that energy received
by the bottom plate through radiation is conducted out i.e., the bottom plate is
cooled by convection. Figure 2c represents the case when TTD is increased to
500K. The features, as described in connection with Figure 2b, are more
pronounced now. The spreading of the isotherms near the heated plate is
presumably due to a large increase in the value of thermal conductivity with
change in temperature. For example, for a rise in temperature from 300K to
800K, the thermal conductivity increases by almost three times. Hence

(a) (b) (c)

Figure 2.
Temperature
distributions at " = 0.3
and Ra = 106 for
(a) TTD = 5K,
(b) TTD = 300K,
(c) TTD = 500K
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although there is significant spreading of the isotherms, the convection heat
transfer from the heated plate increases due to an increase in the value of
thermal conductivity. Figure 2c reveals an interesting feature as far as the
arrangement of isotherms near the bottom plate is concerned. It can be seen
therefore that increase of TTD gradually leads to a situation in which a high
temperature fluid layer can exist below a low temperature fluid layer. This
leads to instability and often leads to convergence problems in numerical
simulations involving still higher values of TTD. It is a kind of flow instability.
It seems that this sort of instability is not apparently due to lack of
discretization or drawback of finite element method. Figures 3a, 3b and 3c
demonstrate the presence of not only thermally stratified cores as discussed
earlier but also point to the fact that the cores are more or less stagnant too. The
mid-plane vertical velocity distribution is shown in Figure 4. It is seen that as
the TTD is increased, the maximum velocity in wall boundary layer is shifted
away from the hot wall. Consequently, the boundary layer thickness also
increases. The reason may be ascertained from the fact that with increase of hot
wall temperature, the viscosity in its vicinity increases which lessens the
possibility of occurrence of the maximum velocity close to the wall.

Figure 3a.
Velocity plot for " = 0.3,

TTD = 5K, Ra = 106
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Effect of variation of surface emissivity
In this section, the value of TTD has been kept constant at 300K and the
Rayleigh number is fixed at 106. Since the TTD has been kept constant, the
variable property effect need not be considered at the hot wall. The first case
with " = 0.0 represents one in which the effect of surface radiation is neglected
(see Figure 5a). As expected the core is stagnant and there appears to be two
weak secondary vortices in the core region. Usually this flow is characterized
by fast moving thin shear layers along the active vertical walls and horizontal
jets along the insulated walls. When the surface emissivity is increased to 0.1
and 0.5 (see Figures 5b and 5c), no significant change in the flow structure is
observed. This is expected in view of the constant values of TTD and the
Rayleigh number. However, the associated thermal fields reveal some
interesting aspects (see Figure 6). The isotherms near the heated wall have
spread somewhat with increase of surface emissivity. This results in decrease
of convective heat transfer. However the radiation heat transfer increases
considerably due to increase in the value of the surface emissivity. It is also
evident from the temperature distribution in the core that with increase in the
value of emissivity, the core is more intensively heated. It is interesting to note

Figure 3b.
Velocity plot for " = 0.3,
TTD = 300K, Ra = 106
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that with increase in emissivity the temperature of the upper horizontal plate
decreases while the lower plate experiences the reverse trend. Figure 7
represents the heat flux distributions along the hot and cold wall. As can be

Figure 3c.
Velocity plot for " = 0.3,
TTD = 500K, Ra = 106
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seen the patterns are typical of pure natural convection cases i.e., the heat flux
is maximum for the cold wall, near the top while reverse is true for the heated
plate. The areas under them indicate the amount of heat transfer from the
respective walls. In Figure 7, heat flux distributions along the cold and hot wall
are also shown for the cases with " = 0.1 and " = 0.5. In this case, the general
observation is that the effect of increase of surface emissivity is to bring about
a small variation in the heat flux distribution, be it cold wall or hot wall. It may
be seen that the distribution of the energy transfer across either hot plate or
cold plate has been discontinued near the corners. These corners, in fact,
represent the singularities where there is sudden transition from insulated
boundary condition to one of isothermal boundary condition. This means that
although temperature continuity is ensured across the singularities, the
gradients experience a discontinuity over there.

Heat transfer effects
In this section, an attempt will be made to highlight the heat transfer aspects
for the problem under consideration. Figure 8 represents the variation of total
heat transfer from hot wall keeping the value of Rayleigh Number constant at

Figure 5a.
Velocity plot for " = 0,
TTD = 300K, Ra = 106
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106 . The curve with " = 0 represents the case of pure variable property natural
convection. As expected, the convective heat transfer increases with increase of
TTD; moreover the rate of increase of convective heat transfer over the range of
TTD considered appears to be fairly constant. By rate it is implied that mention
is made about the change of Q with respect to change of TTD. Now if a vertical
line (see Figure 8) is drawn for a given value of TTD, the intercept for the " = 0
curve will represent the value of QN while the remaining part of the intercept
will be the additional increase of heat transfer over natural convection due to
incorporation of radiation. Let us consider first the case with " = 0.1. As can be
seen, both QR and QN increases with TTD. However the rate of increase of QR is
more than the rate of increase of QN. This is more pronounced as the value of "
is increased. For higher values of ", the radiative heat transfer increases at a
rapid rate as TTD increases. Figures 9a and 9b show the same aspects in a
typical non-dimensional plane. The curve shows near the flat profile for a
certain range of (TH ± TC )/TC (over heat ratio) values whereafter QR/QN

increases steadily. This means that within this region, the rates of increase of
QR and QN are same. After this range, radiation contribution to heat transfer is
much more pronounced i.e. consideration of natural convection alone may

Figure 5b.
Velocity plot for " = 0.1,
TTD = 300K, Ra = 106
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result in an underestimation of the heat transfer from the hot wall. Now let us
consider the initial portion of the curve where QR/QN decreases with TTD. The
drop in QR/QN with increase in TTD may be illustrated in the following
manner:

Qconv (hot wall) � ÿK�TTD��@�=@X�x�0 �12�

Figure 5c.
Velocity plot for " = 0.5,
TTD = 300K, Ra = 106

Figure 6.
Temperature
distributions at Ra = 106

and TTD = 300K for
" = 0, 0.1, 0.5
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For low values of TTD, the convective heat transfer from the hot wall is of the
order of TTD, assuming negligible variation of K with TTD. So the rate of
increase of heat transfer is constant and equal to the thermal conductivity at
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the reference temperature. Now,

QR � 0��"A:�TTD�:�TH � TC��T
2

H � T
2

C� �13�

or,

Q=TTD � 0��"H:�TH � TC��TH �
2

TC�
2

�14�

Now let us consider the radiative transfer at two different values of TTD, with

TC = 300K, Ra = 106 and "= 0.1
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�QR=TTD�TTD�350K

�QR=TTD�TTD�305K

� �H350K

H305K
���350� 300��3502 � 3002�
�305� 300��3052 � 3002��

� �0:464��1:25� � 0:58

In this calculation, the height of the cavity is determined from known values of
Rayleigh number and TTD, while the property values are with respect to the
reference temperature. What happens is that as TTD is increased (in the lower
range), the height ratio goes on decreasing, while the other part goes on
increasing. This increase is slow at the initial stages but develops rapidly in the
upper ranges of TTD values, leaving a near flat zone in the lower range of
TTD. Now if TTD is kept constant and Rayleigh number is increased the
ordinate i.e. heat ratio will be lower since increased value of Ra results in
stronger natural convection. Now let us consider the same sets of curves with
different value of " i.e. say " = 0.5 (see Figure 9b). The nature of the curve
remains the same. However there are some important points of difference too.
Firstly these curves start with some higher values of heat ratio compared to the
cases discussed in connection with Figure 9a. Since " is higher, even at lower
values of TTD, QR/QN will be higher. Secondly, the near flat zone has been
shifted upwards. Also the zone occurs in the same range of TTD irrespective of
the value of emissivity.

Conclusions
The present work shows in detail the numerical methodology of introducing
surface radiation in the finite element formulation of variable property natural
convection equations. The necessity of averaging radiosity in between two
successive iterations values has also been outlined, since it leads to easier
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convergence. From the point of view of heat transfer, there are a few interesting
outcomes which are described below.

. The presence of radiation destroys the thermal stratification in the core
and results in distribution of isotherms in such a manner as to lead to the
instability in the thermal and flow field. This is one of the basic reasons
behind non-convergence at higher values of Rayleigh Number and
emissivity.

. It has been observed that when the reference temperature is 300K and
the value of overheat ratio is around 0.35, radiation contribution to heat
transfer starts to assume greater significance compared to its convective
counterpart. It has also been observed that this value is independent of
the Rayleigh Number and the surface emissivity.

. The trend in the variation of heat ratio with over heat ratio is similar for
all values of emissivity.
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